Brief Communications

A new method for the synthesis of aziridine derivatives

P. V. Arbuzov,* M. G. Voronkov, R. G. Mirskov, E. V. Bakhareva, and V. I. Rakhlin

Irkutsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences,
1 ul. Favorskogo, 664033 Irkutsk, Russian Federation.
Fax: +7 (395 2) 46 6434

The photoinduced reaction of N-trialkylstannyl-N-triorganylsilyl-substituted allylamines with perfluorocarbonyl iodides results in the formation of 1-triorganylsilyl-2- $(\alpha,\alpha$ -dihydroperfluoroalkyl)aziridines.

Key words: aziridine derivatives, *N*-trialkylstannyl-*N*-triorganylsilylallyl-substituted amines, perfluorocarbonyl iodides, photoinduced addition.

Photoinduced reactions of polyhaloalkanes with allyl-chalcogenostannanes $CH_2=CHCH_2-Y-SnR_3$ (where Y = O, S) result in the formation of the corresponding substituted three-membered heterocycles. ¹⁻³ However, the analogous reaction of polyhaloalkanes with stannylated allylamides of carboxylic acids yields solely five-membered heterocycles — 2,5-disubstituted oxazolines-2,4 but not the expected substituted aziridines.

In the present work it is shown that 1-triorganylsilyl- $2-(\alpha,\alpha$ -dihydroperfluoroalkyl)aziridines 1—5 are formed

MeO

5

Me

in high yields as a result of a photoinduced reaction of N-trialkylstannyl-N-triorganylsilylallylamine with per-fluoroalkyliodides.

The reaction proceeds upon UV-irradiation of the equimolar reagents mixture (6 h at 30 °C).

New substituted aziridines, which are a new class of bioactive silicon compounds, have a low toxicity and anticonvulsive and sedative action.⁵

Experimental

The GLC-analysis was carried out on a chromatograph "Tsvet-126" using a katharometer as detector, helium as carrier

Table 1. Characteristics of aziridines 1-5

Compo- und	Yield (%)	В.р./°С (<i>p</i> /Тогг)	$n_{\rm D}^{20}$	d_4^{20}
1	56	72-74(48)	1.3593	1.1884
2	71	68 - 70(9)	1.3805	1.1750
3	75	73-75(25)	1.3633	1.2289
4	72	70 - 71(50)	1.3791	1.1031
5	78.5	96-98(45)	1.3543	

Translated from Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 759-760, March, 1996

Compound		¹ H NMR (CDCl ₃ , δ, ppm)				Mass spectrum	
		RFCH ₂ — (m, 3 H)		Нь	R ₃ Si	(<i>m</i> /z)	
	i	2.15	1.80 (m, 1 H)	1.59 (dd, 1 H)	0.4 (s, 9 H)	297, 178, 128, 119, 73	
RFCH ₂ H _b C-C	2	2.13	1.79 (m, L H)	1.61 (m, 1 H)	0.05 (d, 6 H) 0.98 (m, 7 H)	325, 206, 141, 101	
HÇ NHa	3	2.24	1.93 (m, 1 H)	1.61 (m, 1 H)	0.11 (s, 6 H) 3.42 (s, 3 H)	313, 194, 129, 90	
ŚiR ₃	4	2.15	1.92 (dd, 1 H)	1.61 (dd, 1 H)	0.1 (s, 6 H) 3.45 (s, 3 H)	213, 178, 129, 90	
	5	2.21	1.90 (dd, 1 H)	1.60 (dd, 1 H)	0.08 (s, 6 H) 3.42 (s, 3 H)	363, 276, 195, 146, 130, 90	

Table 2. Parameters of ¹H NMR spectra and mass-spectra of aziridines 1-5

gas, glass columns 3 m × 4 mm, sorbent Chromaton-N-AW-HMDS 0.2-0.25 mm, permeated by 10 % PMS-1000.

¹H NMR spectra were recorded on a "Tesla BS-567 A" (100 MHz) spectrometer. The chemical shifts were measured with an accuracy of 0.01 ppm. The mass spectra were recorded on a "Varian MAT-212" spectrometer with ionization energy 70 eV.

General procedure of obtaining N-(triorganylsilyl)-N-(trialkylstannyl)allylamines. A mixture of 19.39 g (70 mmoles) of (triethylstannyl)diethylamine and 10.32 g (80 mmoles) N-(trimethylsilyl)allylamine was placed in a flask for distillation in vacuo, and the mixture was heated until distillation of diethylamine stopped. After distillation in vacuo 17.72 g (76 %) of N-(trimethylsilyl)-N-(triethylstannyl)allylamine with b.p. 76-78 °C (1 Torr) was isolated. ¹H NMR spectrum (CDCl₃, δ, ppm): 5.86 (m, 1 H, =CH-); 4.62 (m, 2 H, CH₂=); 3.58 (m, 2 H, N-CH₂-); 1.16 (m, 15 H, Et₃Sn); 0.05 (s, 9H, Me₃Si).

Analogously obtained: 1) N-(dimethylisopropylsilyl)-N-(triethylstannyl)allylamine, yield 71 %, b.p. 122–124 °C (1 Torr), ^{1}H NMR spectrum (CDCl₃, δ , ppm): 5.78 (m, 1 H, =CH-); 5.11 (m, 2 H, CH₂=); 3.58 (m, 2 H, N-CH₂-); 1.22-0.93 (m, 22 H, PrSn and Et₃Sn); 0.0 (s, 6 H, Me₂Si);

- 2) N-(dimethyloxysilyl)-N-(triethylstannyl)allylamine, yield 84 %, b.p. 105–107 °C (5 Torr), ¹H NMR spectrum (CDCl₃, δ, ppm): 5.79 (m, 1 H, =CH—); 5.00 (m, 2 H, CH₂=); 3.58 (m, 2 H, N-CH₂—); 3.39 (s, 3 H, MeO—); 1.13 (m, 15 H, Et₃Sn); 0.05 (m, 6 H, Me₂Si);
- 3) N-(dimethylmethoxysilyl)-N-(tributylstannyl)allylamine, yield 73 %, b.p. 118-120 °C (0.5 Torr), ¹H NMR spectrum (CDCl₃, δ , ppm): 5.77 (m, 1 H, =CH-); 5.00 (m, 2 H,

 $CH_2=$); 3.57 (m, 2 H, N- CH_2 -); 3.36 (s, 3 H, MeO-); 1.42-0.98 (m, 27 H, Bu^n_1Sn); 0.05 (s, 6 H, Me_2Si).

Reaction of N-(triorganylsilyl)-N-(trialkylstannyl)allylamines with perfluoroalkyliodides. A mixture of 16.7 g (50 mmoles) N-(trimethylsilyl)-N-(triethylstannyl)allylamine and 16.3 g (55 mmoles) heptafluoroiodopropane was placed in a Pyrex ampule blown through argon, and illuminated by UV-light (lamp DRT-400) for 6 h at 30 °C. 1-Trimethylsilyl-2-(α , α -dihydroperfluorobuthyl)aziridine (8.3 g) was isolated by distillation in vacuo.

Aziridines 2-5 were analogously obtained (Tables 1, 2).

References

- P. V. Arbuzov, V. I. Rakhlin, R. G. Mirskov, B. Z. Shterenberg, M. G. Voronkov, Metalloorg. Khim., 1989, 2, 889 [Organomet. Chem. USSR, 1989, 2 (Engl. Transl.)].
- P. V. Arbuzov, V. I. Rakhlin, M. G. Voronkov, B. F. Kukharev, V. K. Stankevich, T. I. Tomarovskaya, Pat. USSR №1657504, Bull. Izobret. [Bull. Invent.], 1991, No. 23 (in Russian).
- 3. P. V. Arbuzov, G. N. Legov, R. G. Mirskov, M. G. Voronkov, V. I. Rakhlin, *Metalloorg. Khim.*, 1992, 5, 839 [Organomet. Chem. USSR, 1992, 5 (Engl. Transl.)].
- P. V. Arbuzov, R. G. Mirskov, M. G. Voronkov, V. I. Rakhlin, Metalloorg. Khim., 1992, 5, 1005 [Organomet. Chem. USSR, 1992, 5 (Engl. Transl.)].
- E. V. Bakhareva, N. N. Vasil'eva, P. V. Arbuzov, V. I. Rakhlin, et. al., Pat. USSR Ne1781221, Bull. Izobret. [Bull. Invent.], 1992, No. 46 (in Russian).

Received April 4, 1995; in revised form June 6, 1995